MUTUTE OF TOURNOLOGY	Γ
BANGALORE	

-

Copyright ©2017. cAAS. All rights reserved.

Table of Contents

17EC54 : INFORMATION THEORY AND CODING	2
A. COURSE INFORMATION	2
1. Course Overview	2
2. Course Content	2
3. Course Material	3
4. Course Prerequisites	3
B. OBE PARAMETERS	3
1. Course Outcomes	3
2. Course Applications	4
3. Articulation Matrix	5
4. Mapping Justification	
5. Curricular Gap and Content	7
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN – 1	8
Module – 1	8
Module – 2	10
E1. CIA EXAM – 1	
a. Model Question Paper – 1	
b. Assignment –1	13
D2. TEACHING PLAN – 2	14
Module – 3	14
Module – 4	16
E2. CIA EXAM – 2	17
a. Model Question Paper – 2	
b. Assignment – 2	18
D3. TEACHING PLAN – 3	19
Module – 5	19
E3. CIA EXAM – 3	20
a. Model Question Paper – 3	20
b. Assignment – 3	21
F. EXAM PREPARATION	21
1. University Model Question Paper	21
2. SEE Important Questions	24

SHISTITUTE OF ARE	SKIT	Teaching Process	Rev No.: 1.0
A POPOL	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18-08-2019
SANGALORE *	Title:	Course Plan	Page: 2 / 31

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

17EC54 : INFORMATION THEORY AND CODING

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	EC
Year / Semester :	3/5	Academic Year:	2019-20
Course Title:	INFORMATION THEORY AND CODING	Course Code:	17EC54
Credit / L-T-P:	4/L	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	100 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	NAYANA HEGDE	Sign	Dt:
Checked By:		Sign	Dt:

2. Course Content

Mod	Module Content	Teaching	Module	Blooms
ule		Hours	Concepts	Level
1	Introduction, Measure of information, Information content	10	Entropy	
	of message, Average Information content of symbols in		Markov Model	L2,L3
	Long Independent sequences, Average Information content			
	of symbols in Long dependent sequences, Markov Statistical			
	Model of Information Sources, Entropy and Information rate			
	of Markoff Sources			
2	Source coding theorem, Prefix Codes, Kraft McMillan	10	Uniqueness of	L2
	Inequality property - KMI Encoding of the Source Output,		code	
	Shannon's Encoding Algorithm Shannon Fano Encoding			
	Algorithm, Huffman codes, Extended Huffman coding,		Encoding	
	Arithmetic Coding, Lempel – Ziv Algorithm		Algorithms	
3	Communication Channels Channel Models, Channel Matrix,	10	Communicatio	L2,L3

THISTITUTE OF THE	SKIT	Teaching Process	Rev No.: 1.0	
San KRis	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18-08-2019	
BANGALORE	Title:	Course Plan	Page: 3 / 31	
Copyright ©2017. cAAS. All rights reserved.				

Copyrig	ht ©2017. cAAS. All rights reserved.			
	Joint probability Matrix, Binary Symmetric Channel, System		n channels	
	Entropies, Mutual Information, Channel Capacity, Channel			
	Capacity of : Binary Symmetric Channel, Binary Erasure		Channel	
	Channel, Muroga,s Theorem, Continuous Channels		capacity	
4	Error Control Coding Introduction, Examples of Error control	10	Syndrome	L3,L4
	coding, methods of Controlling Errors, Types of Errors,		calculation	
	types of Codes, Linear Block Codes: matrix description of			
	Linear Block Codes, Error Detection and Error Correction		Error	
	Capabilities of Linear Block Codes, Single Error Correcting		detection and	
	hamming Codes, Table lookup Decoding using Standard		correction	
	Array. Binary Cyclic Codes: Algebraic Structure of Cyclic			
	Codes, Encoding using an $(n-k)$ Bit Shift register, Syndrome			
	Calculation, Error Detection and Correction			
5	Golay Codes, BCH Codes	10	Coding	L3,14
	Convolution Codes Convolution Encoder, Time domain			
	approach, Transform domain approach, Code Tree, Trellis		Encoder and	
	and State Diagram, The Viterbi Algorithm		decoder	
			design	

3. Course Material

Mod	Details	Available
ule		
1	Text books	
	Digital and analog communication systems, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 1996.	In Lib
2	Digital communication, Simon Haykin, John Wiley India Pvt. Ltd, 2008	In Lib
3	Information Theory and Coding, Muralidhar Kulkarni, K.S. Shivaprakasha, Wiley India Pvt. Ltd, 2015, ISBN:978-81-265-5305-1.	
2	Reference books	
1	ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007	In dept
2	Principles of digital communication, J. Das, S. K. Mullick, P. K. Chatterjee, Wiley, 1986 – Technology & Engineering	In dept
3	Digital Communications Fundamentals and Applications, Bernard Sklar, Second Edition, Pearson Education, 2016, ISBN: 9780134724058.	In dept
4	Information Theory and Coding, K.N.Haribhat, D.Ganesh Rao, Cengage Learning, 2017	In dept
3	Others (Web, Video, Simulation, Notes etc.)	
		Not Available

SKIT		Teaching Process	Rev No.: 1.0
San Kais	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18–08–2019
BANGALORE	Title:	Course Plan	Page: 4 / 31
Copyright ©2017.	cAAS. All rights reserv	ved.	

4. Course Prerequisites

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	17MAT	Engineering	Knowledge on set theory	3		L3
	31	mathematics				
	17MAT	Engineering	Knowledge on probability	3		L3
	31	mathematics				
	17EC44	principles	knowledge of principle	es 4		L4
		communication	communication system			
		system				

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach.	Concept	Instr	Assessmen	Blooms'
		Hours		Method	t Method	Level
17EC54.1	Understand entropy by measure of	4	Entropy	Lecture	Cia/assigna	L2
	information content of the message				ment/quiz	Understand
17EC54.2	Apply entropy and oder of	6	Markov	Lecture	Cia/assigna	L3
	information sources to analyze		Model		ment/quiz	
	Markov model					
17EC54.3	Understand uniqueness of code	3	Uniqueness	Lecture	Cia/assigna	L2
	using Kraft Inequality and prefix		property		ment/quiz	
	code					
17EC54.4	Understand the conversion of	7	Encoding	Lecture	Cia/assigna	L3
	information into binary sequence		algorithms	/ PPT	ment/quiz	Apply
	using Shanon, Shanon Fano and					
	Huffman encoding algorithms					
17EC54.5	Model continuous and discrete	4	Communica	Lecture	Cia/assigna	L2
	communication channels using		tion		ment/quiz	
	input, out and joint probability		channel			
	matrix					
17EC54.6	Determine channel capacity of	6	Channel	Lecture	Cia/assigna	L3

THISTITUTE OF ARE	SKIT	Teaching Process	Rev No.: 1.0		
I POTOUNING	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18-08-2019		
BANGALORE*	Title:	Course Plan	Page: 5 / 31		
Copyright ©2017. cAAS. All rights reserved.					

-	Total	50	-	-	-	-
	codes					
c	convolution codes, BCH and Golay		design			
0 6	Block codes, cyclic codes,		circuit		ment/quiz	
17EC54.1	Design decoder circuit for for Linear	8	Decoder	Lecture	Cia/assigna	L4
c	codes					
c	convolution codes, BCH and Golay		design			
E	Block codes, cyclic codes,		circuit		ment/quiz	
17EC54.9	Design encoder circuit for for Linear	2	Encoder	Lecture	Cia/assigna	L3
	code					
ł	hamming code,Golay code and BCH		correction			
c	code using LBC,cyclic code and		and			
c	detect and correct error in binary		detection		ment/quiz	
7EC54.8	Apply syndrome calculation and	7	Error	Lecture	Cia/assigna	L2
ľ	block codes, cyclic code.					
	Block codes, cyclic code.		calculation			
	Linear		calculation		ment/quiz	
	of the check bits computed using	J	(error)	Lecture	ment/quiz	LJ
	Determine a codeword comprising	3	Syndrome	Locturo	Cia/assigna	L3
	and Muroga's theorem			Tutonai		
			capacity		ment/quiz	
	binary symmetric and binary erasure channels using mutual information		capacity	and Tutorial	ment/quiz	

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	Provide a generalized method of considering microscopic behavior to make	CO1	L2
	macroscopic predictions, under given conditions.		
2	Markov model used in non-observable biological sequence analysis	CO2	L3
3	Uniqueness property and prefix codes are widely used in applications that	CO3	L2
	compress data, including JPEG for images and MP3 for music.		
4	Encoding algorithms are used in lossless data compression	CO4	L3
5	Transfer information between sender and receiver.	CO5	L2
6	To design MIMO system.	CO6	L2
7	Used in digital communication.	C07	L3
8	Used in computer memory system	CO8	L2
9	Used for speed, secrecy, security, or saving space by shrinking size of	CO9	L2
	information.		
10	Retrieve original information from received message.	CO10	L4

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes	Program Outcomes												
#	COs	РО 1	PO2	PO 3	PO 4	PO 5	PO6	PO 7	PO 8	PO9	PO 10	PO 11	PO 12	Level
17EC54.1	Understand entropy by measure of information content of the message		3	3	2	1	1	1	1	3	1	1	1	L2
17EC54.2	Apply entropy and oder of information sources to statistical Markov model		3	3	1	1	1	1	1	3	1	1	1	L2
17EC54.3	Understand uniqueness of code using Kraft Inequality and prefix code	3	3	3	1	1	1	1	1	2	1	1	1	L2
17EC54.4	Understand the conversion of information into binary sequence using Shanon, Shanon Fano and Huffman encoding algorithms		3	3	1	1	1	1	1	3	1	1	1	L3
17EC54.5	Model continuous and discrete communication channels using input, out and joint probability matrix		3	3	2	1	1	1	1	2	1	1	1	L2
17EC54.6	Determine channel capacity of binary symmetric and binary erasure channels using mutual information and Muroga's theorem		3	3	2	1	1	1	1	2	1	1	1	L2
17EC54.7	Determine a codeword comprising of the check bits computed using Linear Block codes, cyclic code.		3	3	2	1	1	1	1	3	1	1	1	L3
17EC54.8	Apply syndrome calculation and detect and correct error in binary code using LBC, cyclic code and hamming code,Golay code and BCH code		3	3	1	1	1	1	1	3	1	1	1	L2
17EC54.9	Design encoder circuit for Linear Block codes, cyclic codes, convolution codes, BCH and Golay codes		3	3	2	1	1	1	1	3	1	1	1	L2
17EC54.10	Design decoder circuit for	3	3	3	1	1	1	1	1	3	1	1	1	L4

	SKIT	Teaching Process	Rev No.: 1.0				
A POLOGICA	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18-08-2019				
BANGALORE	Title:	Course Plan	Page: 7 / 31				
Copyright ©2017.	cAAS. All rights reserv	ved.					
	Linear Bloo	ck codes, cyclic					
	codes, convo						
and Golay codes							
Note: Men	Note: Mention the mapping strength as 1, 2, or 3						

4. Mapping Justification

Мар	ping	Justification	Mapping Level
СО	PO	-	-
CO1	PO1	Applies basic mathematics and science knowledge for solution to engineering problems	L2
CO1	PO2	Identify, formulate and review complex engineering problems	L2
CO1	PO3	Design digital system components	L2
CO1	PO9	Applies to individual and team work for project, internship and mini project	
CO2	PO1	Applies basic mathematics and science knowledge for solution to engineering problems	L2
CO2	PO2	Identify, formulate and review complex engineering problems	L2
CO2	PO3	Design digital system components	L3
CO2	PO9	Applies to individual and team work for project, internship and mini project	L2
CO3	PO1	O1 Applies basic mathematics and science knowledge for solution to engineering problems	
CO3	PO2	Identify, formulate and review complex engineering problems	L4
CO3	PO3	Design digital system components	L2
CO3	PO9	Applies to individual and team work for project, internship and mini project	L2
CO4	PO1	Applies basic mathematics and science knowledge for solution to engineering problems	L2
CO4	PO2	Identify, formulate and review complex engineering problems	L3
CO4	PO3	Design digital system components	L2
CO4	PO9	Applies to individual and team work for project, internship and mini project	L2
CO5	PO1	Applies basic mathematics and science knowledge for solution to engineering problems	L3
CO5	PO2	Identify, formulate and review complex engineering problems	L2
CO5	PO3	Design digital system components	L2
CO5	PO9	Applies to individual and team work for project, internship and mini project	L4
CO6 PO1		Applies basic mathematics and science knowledge for solution to engineering problems	L2

ANSTITUTE OF AN	SKIT	Teaching Process Rev N	o.: 1.0				
ABOTONI	Doc Code:	SKIT-EC.Ph5b1.F02 Date:	18-08-201	19			
* BANGALORE*	Title:	Course Plan Page:	8 / 31				
	cAAS. All rights rese						
C06	PO2	Identify, formulate and review complex engineering problem	L2				
CO6	PO3	esign digital system components					
CO6	PO9	Applies to individual and team work for project, internship a	nd L3				
		mini project					
C07	PO1	Applies basic mathematics and science knowledge for soluti	on L2				
		to engineering problems					
C07	PO2	Identify, formulate and review complex engineering problem	s L2				
C07	PO3	Design digital system components	L3				
C07	PO9	Applies to individual and team work for project, internship a	nd L2				
		mini project					
CO8	CO8 PO1 Applies basic mathematics and science knowledge for solution						
		to engineering problems					
CO8	PO2	Identify, formulate and review complex engineering problem	s L4				
CO8	PO3	Design digital system components	L2				
CO8	PO9	Applies to individual and team work for project, internship a	nd L2				
		mini project					
CO9	PO1	Applies basic mathematics and science knowledge for soluti	on L2				
		to engineering problems					
CO9	PO2	Identify, formulate and review complex engineering problem	s L3				
CO9	PO3	Design digital system components	L2				
CO9	PO9	Applies to individual and team work for project, internship a	nd L2				
		mini project					
CO10	PO1	Applies basic mathematics and science knowledge for soluti	on L3				
		to engineering problems					
CO10	PO2	Identify, formulate and review complex engineering problem	s L2				
CO10	PO3	Design digital system components	L2				
CO10	PO9	Applies to individual and team work for project, internship a	nd L4				
		mini project					

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

Dept EC Prepared by Approved

AND ALONE T	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18-08-2019
	Title:	Course Plan	Page: 9 / 31

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching		No. of	quest	ion in	Exam		CO	Levels
ule		Hours	CIA-	CIA-	CIA-	Asg	Extra	SEE		
#			1	2	3		Asg			
1	Information Theory	10	2	-	-	1	1	2	CO1,	L2, L3
									CO2	
2	Source Coding	10	2	-	-	1	1	2	CO3,	L2, L3
									CO4	
3	Information Channels	10	-	2	-	1	1	2	CO5,	L2, L3
									CO6	
4	Error Control Coding and Binary	10	-	2	-	1	1	2	C07,	L2, L3
	Cyclic Codes								C08	
5	Some Important Cyclic Codes and	10	-	-	4	1	1	2	CO9,	L3,L4
	Convolution Codes								CO10	
-	Total	50	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weight age in Marks	СО	Levels
Dept EC			
Prepared by			Checked by
Approved			

THE TITUTE OF THE	SKIT	Teach	ing Process	Rev No.: 1.0
ALL DOTOR	Doc Code:	SKIT-EC.Ph5b1.F02		Date: 18-08-2019
BANGALORE	Title:	Course Plan		Page: 10 / 31
Copyright ©2017. c	AAS. All rights reser	ved.		1
CIA Exam -	1	30	CO1, CO2, CO3, CO4	L2, I3, L2, I3
CIA Exam -	2	30	CO5, CO6, CO7, C08	L2, L3, L2, I3
CIA Exam -	3	30	CO9, CO10	L3, L4
Assignment	: - 1	05	C01, C02, C03, C04	L2, I3, L2, I3
Assignment	: - 2	05	CO5, CO6, CO7, CO8	L2, L3, L2, I3
Assignment	: - 3	05	CO9, CO10	L3, L4
Seminar – 1				
Seminar - 2				
Seminar – 3				
Other Activ	ities – define	2		
– Slip test				
Final C	IA Marks	40	-	-

Note : Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN – 1

Module – 1

Title:	Information Theory	Appr	16 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand entropy by measure of information content of the message	CO1	L2
2	Apply entropy and oder of information sources to statistical Markov model	CO2	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Introduction to Subject, course objectives and outcomes	C01	L2
2	Information, data, measure of information	C01	L2
3	Information content of message	C01	L2
4	Average Information content of symbols in Long Independent sequences	C01	L2
5	Average Information content of symbols in Long dependent sequences	C02	L3
6	Markov Statistical Model of Information Sources	C02	L3
7	Markov Statistical Model of Information Sources	C02	L3
8	Entropy and Information rate of Markov Sources	C02	L3

MUTTUTE OF TECHNOLOGY HIS N BANGALORE
MGALO

	SKIT	Teaching Process	Rev No.: 1.0
)	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18-08-2019
	Title:	Course Plan	Page: 11 / 31

date opposit

9	Entropy and Information rate of Markov Sources	C02	L3
10	Entropy and Information rate of Markov Sources	C02	L3
С	Application Areas	СО	Leve
1	Provide a generalized method of considering microscopic behavior to	C01	 L2
-	make macroscopic predictions, under given conditions.		
2	Markov model used in non-observable biological sequence analysis	CO2	L3
d	Review Questions	-	_
1	With a neat block diagram explain information(communication	CO1	L2
	system)		
2	Define symbol rate, self information, zero memory source, average	CO1	L2
	information, information rate		
3	Obtain an expression for entropy of zero memory source information	CO1	L2
	source emitting independent sequence of symbols		
4	Discuss various properties of entropy	CO1	L2
5	A code is composed of dots and dashes. Assuming that adashis 3	CO1	L2
	times long as a dot has 1/3 probability of occurrence. Calculate		
	i)information in dot and dash ii)the entropy of dot dash code iii)the		
	average rate of information if dot lasts for 10 msec and this time is		
	allowed between symbols.		
6	Find relation between Hartelys, nats and bits	CO1	L2
7	The output of an information source consists of 128 sysmbols,16 of	CO1	L2
	which occur with probability of $1/32$ and remaining with a probability		
	of1/224. The source emits 1000 symbols per second. Assuming		
	symbols are chosen randomly, find entropy and average rate of		
	information.		
8	A pair of dice is tossed simultaneously in an experiment. Outcome of	CO1	L2
	the first dice is noted as X1 and outcome of second dice as X2. If the		
	two events are :		
	A={X1,X2 : such as (X1+X2)<=8} ;B={X1,X2 : such as X1>X2}		
	Then find the self-information of A and B and entropy of the		
	experiment.		
9	State diagram of Markov source is shown in fig. Calculate: State	CO2	L3
	probability, state entropy, Entropy of the source.		
10	State diagram of Markov source is shown in fig. Calculate: State	CO2	L3
10	probability, state entropy , Entropy of the source.	02	LD
	CH CF 0.5		
	,0.5		
	D 0.5 B		
ot EC	0.5		
	d by	C	hecked
prove	ed Oo.6		

THE TITUTE OF THE	SKIT	Teaching Process	Rev No.:	1.0
San Kriss	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18	-08-2019
BANGALORE	Title:		Page: 12	/ 31
11		der Markov source shown in fig, find state probabilities states, entropy of the source and G1, G2.	5, CO2	L3
	-	of Markov source is shown in fig Calculate: Stat the entropy , Entropy of the source $3/4$ $P_{3} = \frac{1}{2}$	e CO2	L3
		order Markoff source shown in fig, find stat intropy of the states, entropy of the source C + 4 C	e CO2	L3
е	Experiences			_
1			CO1	L2
2				
3				
4			CO3	L3
5				

ATTITE .	
INSTITUTE OF	
HANDON DO AND	
18	
BANGALORE	
GAL	

	SKIT	Teaching Process	Rev No.: 1.0
)	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18-08-2019
	Title:	Course Plan	Page: 13 / 31

Module – 2

Title:	Source Coding	Appr Time:	10 Hrs
а	Course Outcomes	_	Blooms
_	The student should be able to:	-	Level
1	Understand uniqueness of code using Kraft Inequality and prefix code	CO3	L2
2	Understand the conversion of information into binary sequence using	CO4	L3
	Shanon, Shanon Fano and Huffman encoding algorithms		
b	Course Schedule	_	-
Class No	Module Content Covered	СО	Level
11	Source coding theorem	CO3	L2
12	Prefix Codes	CO3	L2
13	Kraft McMillan	CO3	L2
	Inequality property - KMI		
14	Encoding of the Source Output	CO4	L3
15	Shannon's Encoding Algorithm	CO4	L3
16	Shannon Fano Encoding Algorithm	CO4	L3
17	Huffman codes	CO4	L3
18	Extended Huffman coding	CO4	L3
19	Arithmetic Coding	CO4	L3
20	Lempel – Ziv Algorithm	CO4	L3
С	Application Areas	CO	Level
1	Uniqueness property and prefix codes are widely used in applications	CO3	L2
	that compress data, including JPEG for images and MP3 for music.	604	
2	Encoding algorithms are used in lossless data compression	CO4	L3
d	Review Questions	_	_
14	Define coding. Explain necessity of coding.	CO3	L2
15	Explain prefix property with an example.	CO3	L2
16	What is KRAFT inequality? Explain with suitable example.	CO3	L2
17	Explain code efficiency and code redundancy	CO3	L2
18	State and prove source coding theorem.	CO3	L2
19	State and prove Shanon's first theorem	CO3	L2
20	Explain classification of binary codes.	CO3	L2

THISTITUTE	St checula		IT					ead	ching I	Proces	s				ev No.: 1			
A SAI KA	the second secon															Date: 18-08-2019		
Copyright ©	2017 644	Tit			ourse P	an								Р	age: 14 /	31		
21	1				perty fo	or the	follov	wir	ig set	of cod	les	5.			CO3	L2		
					_					1								
					/	4	1											
					I	3	10											
					(2	110											
					I)	1110											
						E	1111											
22								ner	ate bina	ary cod	les	for the	set	of symbols	CO4	L2		
					Also find			_		F		F		C				
	Symb		A		В	C		D		E		F		G				
	Р		1/	2	1/4	1/8		1/	16	1/32		1/64	1	1/64				
		a 1						~										
23					encoding obabilitie					code w	or	ds and	effic	ciency and	CO4	L2		
		5		1		C												
	Symt	bo /	4	В	С	D	E		F	G		Н	1					
	1																	
	Р	(0.2	0.18	0.15	0.12	0.1	0	0.08	0.07		0.05	0.0	3				
		Ĩ	2															
24				ory les	ss source	has a	1 alpha	bet	t of sev	en sym	bo	ls with	prob	abilities as	4	L2		
	given Symł		<u>v.</u> A		В	С		D		E		F		G				
	P		0.2		0.25	0.1			125	0.125		0.06	25	0.0625				
														y moving				
	-				as high a				•					,				
25	Consi	ider	<u>а</u>	DM	S with	1 X=	={X,Y	73	wit	h res	sne	ective	nre	obabilities	CO4	L2		
	P={0.	.6,0.2												arithmetic				
26	coding Encod		e fol	lowin	g infor	nation	using	1.2	Zalgor	ithm '	'T	HIS 19	S HI	S HIT"	CO4	L2		
20					ng inpu							_			CO4	L2 L2		
	W_PN								,									
е	Ехре	erier	nces	5											-	-		
1															CO1	L2		
2																		
4															CO3	L3		
5																		

Dept EC Prepared by Approved

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs		15EC5	54 Se	em:5	1		Marks:	30)	Time	e: 7	75 minut	es					
Code		1		- 1		12												
Cour	'se:	Inform																
-	-					quest	ion fro	m eac	h mod	lule		Marks	CO	Level				
1	а	Discus v								<u> </u>		5	C01	L2				
	b	The output of an information source consists of 128 symbols,16 of which occur with probability of 1/32 and remaining with a probability of1/224. The source emits 1000 symbols per second. Assuming symbols are chosen randomly, find entropy and average rate of information.											C01	L2				
	C	is noted $A={X1}$,	as X1 a X2 : su	and outco ch as (X	ome of s 1+X2)<=	eously in econd di =8};B= of A and b	ce as X2 {X1,X2 :	. If the t such as	wo even X1>X2}	ts are :	first dice	5	CO1	L2				
	d																	
2	a	Define:- informa				formatio	n, zero	memor	ry sourc	ce, aver	age self-	5	CO1	L2				
	b	For the	first orc	ler Mark	ov sour	ce shown and G1,	G2.	find state		oilities, e	ntropy of	10	CO2	L3				
3	a	Using Shanon's binary encoding algorithms find the code words and efficienc and redundancy for the probabilities given in the table											CO4	L2				
		Symb ol		В	С	D	E	F	G	Н	I							
		Р	0.25	0.15	0.15	0.12	0.10	0.08	0.06	0.05	0.04							
	b Using Shanon-Fano encoding algorithms find the code words and efficiency an redundancy for the probabilities given in the table									ency and	5	CO4	L2					
		Symbo	bl		A	В	С	D	I	E								
		Р			0.1	0.5	0.2 5	0.125	(0.125								
	с	Explair	ו Kraft	Inequa	ality wit	th exan	nples	1				5	CO3	L2				
	d			•	-													
4	a	A disci probabi		2		arce has	an alp	habet o	of seven	n symb	ols with	8	CO4	L2				

anns.	TITUTE OF JA	Sk	(IT			-	Teachir	ng Proc	ess		Rev No.: 1.0			
SIAI KRISH		Doc	Doc Code: SKIT-EC.Ph5b1.F02										2019	
* BA	Title: Course Plan										Page: 1	6 / 31		
Copyrig	ht ©201	7. cAAS. All r	ights rese	rved.										
		Symbo I	A	В	С	D	E	F	G	Н				
	_	Р	7/3 9	8/39	6/39	10/3 9	3/39	1/39	2/39	2/39				
	 Compute Huffman Code for the set of symbols shown combined symbols as high as possible. Find efficiency an b Consider a DMS with X={X,Y,Z} with respect P={0.6,0.2,0.2}. Find code word for message "YXZXY" coding. 					ey and very and very spective	variance. e probabilities	7	CO4	L2				
	С													
	d													

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions												
Crs Code:15EC54Sem:IMarks:5 / 10Time:90 - 120 minutes												
Course:	Course: Information Theory and Coding											
Note: Each	Note: Each student to answer 2–3 assignments. Each assignment carries equal mark.											

SNo	USN	Assignment Description	Mark	СО	Level
			S		
1		Discuss additive and symmetric property of entropy	6	CO1	L2
2		A binary information source produces message 0 and 1	5	CO1	L2
		with P and 1-P. Determine the entropy of this source and			
		sketch the variations of entropy with P.			
3		Prove that information content of N independent messages	5	CO1	L2
		are additive.			
4		For the Markov source shown, find source entropy and G1,	10	CO2	L3
		G2, G3			
		0.1			
		0.9 (X ₁) (X ₂) 0.1			
		0.9			
		$P(x_1) = 0.8$ $P(x_2) = 0.2$			
5		A black and white TV consists of 526 lines of picture	4	C01	L2
		information. Assume each line consists of 526 pixels and		COT	
		each can have 255 brightness level. Picture is repeated			
		-			
		at30 frames/sec. Calculate the rate of information			
		conveyed by TV for viewer.			

AND INSTIT	UTE OF TRE	SKIT	Teaching Process	Rev No	o.: 1.0		
ALL CONTROLOGY		Doc Code: SKIT-EC.Ph5b1.F02		Date: 18-08-2019			
Copyright ©2017.		Title:	Course Plan	Page: 17 / 31			
	t ©2017.						
6			ir of dice is tossed simultaneously in an experiment.		C01	L2	
			ome of the first dice is noted as X1 and outcome of				
			nd dice as X2. If the two events are :				
		A={X X1>>					
		Then the e					
7	A certain data source has 8 symbols that are produced in					L2	
		block	s of 4 at a rate of 500 blocks/sec. The first symbol in				
		each	block is always the same. The remaining 3 are filled				
	by any of the 8 symbols with equal probability. What is t						
		entro	ppy of this source?				
8			output of an information source consists of 128		CO1	L2	
		symb	ools,16 of which occur with probability of 1/32 and				
		rema	ining with a probability of1/224. The source emits				
		1000) symbols per second. Assuming symbols are chosen				
		rand	omly, find entropy and average rate of information.				
9		Defi	ne: – symbol rate, self-information, zero	5	CO1	L2	
		men	nory sources, average self-information,				
			rmation rate				
10		A ca	rd is drawn from a deck. You are told it is a spade.	5	CO1	L2	
		How	much information did you receive. How much				
		infor	mation is received if it is told as ace.				

D2. TEACHING PLAN - 2

Module - 3

Title:	Information Channels	Appr	10 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Model continuous and discrete communication channels using input, out and joint probability matrix	CO5	L2
2	Determine channel capacity of binary symmetric and binary erasure channels using mutual information and Muroga's theorem	CO6	L3
b	Course Schedule	_	_
Class	Module Content Covered	CO	Level
No			
21	Communication Channels	CO5	L2
22	Channel Models, Channel Matrix	CO5	L2

ANTILITE .				
The of the	SKIT Teaching Process	Rev No.: 1	.0	
	Doc Code: SKIT-EC.Ph5b1.F02	Date: 18-0	08-2019	
BANGALORE	Title: Course Plan	Page: 18 / 31		
	7. cAAS. All rights reserved.			
23	Joint probability Matrix, Binary Symmetric Channel	CO5	L2	
24	System Entropies	CO5	L3	
25	Mutual Information, Channel Capacity	CO6	L3	
26	Channel Capacity of Binary Symmetric Channel	CO6	L3	
27	Channel Capacity of Binary Symmetric Channel	CO6	L3	
28	Channel Capacity Binary Erasure Channel	CO6	L3	
29	Muroga,s Theorem	CO6	L3	
30	Muroga,s Theorem, Continents Channels	CO6	L3	
С	Application Areas	СО	Leve	
1	Transfer information between sender and receiver.	CO5	L2	
2	To design MIMO system.	CO6	L3	
d	Review Questions	_	_	
-	State and prove Shanon Hartley theorem	CO5	L3	
28	Write a short note on channel matrix, JPM, properties of JPM and give example for channel diagram.		L3	
29 ¹	Prove the identities i) $H[X,Y]=H[X]+H[Y]$ ii) $H[X,Y]=H[X]+H[Y/X]$	CO5	L3	
30	Find H[X],H[Y],H[X Y], H[X/Y] and H[Y/X] for the channel shown below $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	CO5	L3	
31	Define mutual information and its properties	CO6	L3	
	Prove mutual information	CO6	L3	
	I(X,Y) = H(X) - H(X/Y) = H(Y) - H(Y/X)			
	Derive the expression for channel capacity of binary channel shown	CO6	L3	
	q Y			
	1●● 1			
	F		1	
34	Prove that $H(X/Y) = p.H(X)$ for a binary erasure channel	C06	L3	
	Prove that H(X/Y)=p.H(X) for a binary erasure channel Two noisy channels are cascaded whose channel matrices are given b	CO6	L3	

HARD COLOR
A BANGALORE *

	SKIT	Teaching Process	Rev No.: 1.0
)	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18–08–2019
	Title:	Course Plan	Page: 19 / 31

	find the overall mutual information I(X,Y) and I(X,Z)		
36	A Gaussian channel has 10 Mhz BW is (S/N) ratio is 100.Calculate	CO6	L3
	channel capacity and maximum information rate.		
е	Experiences	-	-
1		CO1	L2
2			
3			
4		CO3	L3
5			

Module - 4

Title:	Error Control Coding	Appr	10 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Determine a code word comprising of the check bits computed using Linear Block codes, cyclic code.	CO3	L2
2	Apply syndrome calculation and detect and correct error in binary code using LBC, cyclic code and hamming code	CO4	L3
b	Course Schedule	_	
Class No	Module Content Covered	CO	Level
31	Introduction, Examples of Error control coding	C07	L2
32	methods of Controlling Errors	C07	L2
33	Types of Errors, types of Codes	C07	L2
34	Linear Block Codes: matrix description of Linear Block Codes	C07	L3
35	Error Detection and Error Correction Capabilities of Linear Block Codes,	CO8	L3
36	Single Error Correcting hamming Codes, Table lookup Decoding using Standard Array.	CO8	L3
37	Algebraic Structure of Cyclic Codes	CO8	L3
38	Encoding using an (n-k) Bit Shift register	CO8	L3
39	Syndrome Calculation	CO8	L3
		CO8	L3

SHISTITUTE OF A	SKIT	Teaching Process	R	ev No.: 1	.0		
Sent Kriss	Doc Code:	SKIT-EC.Ph5b1.F02	D	ate: 18-0	8-2019		
BANGALORE	Title:	Course Plan	P	age: 20 /	31		
Copyright ©2017. cAAS. All rights reserved.							
	Annlingtion A			<u> </u>			

C C	Application Areas	СО	Level
1	Used in digital communication.	C07	Level L2
2	Used in computer memory system	C08	L2
2	osed in computer memory system	008	LJ
d	Review Questions	_	-37
37	Draw the block diagram of digital communication system and explain	C07	L2
	functions of each block		
38	What are different methods of controlling errors	C07	L2
39	What are types of error and types of codes in error control coding	C07	L2
40	Compare fixed length and variable length code	C07	L2
41	Define terms burst error, systematic LBC, galois Field, Hamming weight	C07	L2
42	Define hamming weight, hamming distance and minimum distance of linear block code	C07	L2
43	If C is valid code vector then prove that $CH^{T=0}$ where H^{T} is transpose of parity check matrix H	C07	L2
44	Test Hamming bound of (7,4) hamming code and show that it is a perfect code.	C07	L3
45	For a systematic LBC (6,3) parity check matrix is 1 0 1 $P = 0 1 1$ $1 1 1$ find all possible code vector, minimum weight of the code, parity check matrix, for received code R=110010, detect and correct the	CO8	L3
46	error occurred. For a Linear Block Code the syndrome is given by: $S1 = r1 + r2 + r3 + r5$,	CO8	L3
	 S2= r1+r2 + r4+ r6 , S3= r1+r3+ r4+ r7 (i) Find Generator Matrix (ii) Find Parity Check Matrix (ii) Draw the Encoder Circuit (iii) How many errors can be detected and corrected? 		
47	For a (6,3) cyclic code Find out: i)Generator Polynomial ii)Generator Matrix iii)Parity Check matrix iv)Equation for code words	CO8	L3
48	A (7,4) Cyclic Code has the generator polynomial $g(x) = 1+x+x^3$. Calculate the syndrome for received vector R=[1 1 1 1 1 1 1],R=[1 0 1 0 1 0 1]. Draw syndrome calculation circuit.	CO8	L3
•	Experiences		
e 1	Lybenenices		 L2
2			
<u> </u>			1

HISTITUTE OF AN	SKIT	Teaching Process	Rev No.: 1	.0	
San Kriss	Doc Code: SKIT-EC.Ph5b1.F02		Date: 18-08-2019		
* BANGALORE*	Title:	Course Plan F	Page: 21 / 31		
Copyright ©201	7. cAAS. All rights reser	ved.			
4				L3	
5					

E2. CIA EXAM - 2

a. Model Question Paper - 2

Crs Cod	o.	15EC54	Sem:	I	Marks:	30	Time:	75 minut	tes	
	e. rse:	Informatio	n Theory	and Codi	na					
-	-				-	ch from	one module.	Mark	СО	Level
			-	-	·			S		
1	a	State and	prove sou	irce codin	g theorem.			5	CO3	L3
	b				orithm and ge below. Also f		inary codes for ency.	the 5	CO4	L3
	с	Check for KMI property for the following set of codes							CO3	L3
2	a	A discrete r as given bel		s source has	an alphabet of	seven sym	bols with probabil	ities 8	CO4	L3
		· ·			e set of symb ssible. Find eff		n above by mov nd variance.			
	b						ective probabili Y" using arithm		CO4	L3
	с									
	d									

THISTITUTE OF AN	SKIT	Teaching Process	Rev No.: 1.0						
SI NINI	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18-08-2019						
-SANGALORE	Title:	Course Plan	Page: 22 / 31						
Copyright ©2017. cAAS. All rights reserved.									

10

CO5

L3

3 a Write a short note on channel matrix, JPM, properties of JPM and give example for channel diagram.
b An analog source has a bandwidth of 4KHz. The signal is sampled at 2.5 times the Nyquist Rate and each sample is quantized into 256 equally likely

	b	An analog source has a bandwidth of 4KHz. The signal is sampled at 2.5 times the Nyquist Rate and each sample is quantized into 256 equally likely levels. Assume that the successive samples are statistically independent. Find the information rate of the source. Can the output of this source be transmitted without error over an analog channel of Bandwidth 50Khz and $S/N = 20$ db. If the output of the source is to be transmitted without error over an analog channel having $S/N = 10$, compute the bandwidth required.		CO5	L3
4	a	Consider a Symmetric Channel whose channel diagram is given by Find channel capacity.	10	CO6	L3
	b	Write a note on continuous channel and differential entropy.	5	CO6	L3

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

				Model A	ssignment	Questio	ns					
Crs C	ode:	15EC54	Sem:	1	Marks:	5 / 10	Time:	9	0 - 120	minutes		
Cours	se:	Informa	tion Theory	and Coding	•							
Note:	Note: Each student to answer 2–3 assignments. Each assignment carries equal mark.											
SNo	ι	JSN		Assign	ment Des	cription			Mark	CO	Level	
									S			
1			Construct	Huffman c	ode for	given d	data and	find	5	CO5	L3	
			theefficiency	/								
2			For the data	a given appl	ly shanon's	encoding	g algorithm	and	5	CO5	L3	
			find the cod	e words. Fir	nd the effici	ency.						
3			Apply shane	on -fano al	gorithm fo	r the da	ta and find	the	5	CO5	L3	
			code words.									
			1/2,1/4,1/8,1	/8,								
4			Using arithr	netic coding	find out t	he code	words for g	jiven	5	CO5	L3	
			input seque	nce. "ABABH	IT"							
5			Construct th	ie code tree	for the give	en code.			5	CO4	L2	
6			Check KMI p	property for	given set o	f codes.			5	CO4	L2	
7		1	Check whet	ner the give	n set of coc	les is pre	efix code.		5	CO4	L2	
8			Using Lemp	el Ziv coding	g find out tl	he code	words.		5	CO5	L3	
9			Encode the	following	information	n using	LZ algor	ithm.	5	CO5	L3	
			"THIS_IS_H	IS_HIT"								
10			Write a short	note on Shar	on Fano alg	orithm			5	CO5	L3	

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18–08–2019
Title:	Course Plan	Page: 23 / 31

D3. TEACHING PLAN – 3

Module – 5

Title:	Some Important Cyclic codes and convolutional code	Appr	10 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design encoder circuit for Linear Block codes, cyclic codes, convolution codes, BCH and Golay codes	CO3	L2
2	Design decoder circuit for Linear Block codes, cyclic codes, convolution codes	CO4	L3
b	Course Schedule	_	-
Class No	Module Content Covered	CO	Level
41	Golay Codes, BCH Codes	CO9	L3
42	Convolution Encoder	CO9	L4
43	Time domain approach	CO9	L4
44	Transform domain approach	CO9	L4
45	Code Tree	CO9	L4
46	Code Tree	CO10	L4
47	Trellis and State Diagram	CO10	L4
48	Trellis and State Diagram	CO10	L4
49	The Viterbi Algorithm	CO10	L4
50	The Viterbi Algorithm	CO10	L4
С	Application Areas	СО	Level
1	Used for speed, secrecy, security, or saving space by shrinking size of information.	CO9	L2
2	Retrieve original information from received message.	CO10	L3
d	Review Questions	-	_
51	Write short note on Golay code and BCH code	CO9	L3
52	What are convolution codes? How they are different from block codes.	CO9	L3
53	For a (3,1,2) convolution encoder with generator sequences $g^1=110, g^2=101, g^3=111$	CO9	L4
	Find the encoder block diagram		
	Find generator matrix and o/p for 11101		
	Find the code word for 11101 using time domain approach		
	draw the state diagram and tree diagram		

SHISTITUTE OF THE	SKIT	Teaching Process	Rev No.: 1	.0
Rank Rank	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18–0	08-2019
BANGALORE	Title:		Page: 24 /	31
Copyright ©20	17. cAAS. All rights reserve	$x_{\text{red.}} = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$		
	Draw encoder	-		
		nomial for message polynomial		
	d(x) =	$x^{2}+x^{4}$ in systematic form		
		code Find out: omial ii)Generator Matrix natrix iv)Equation for code words	09	L4
56	syndrome for rece	ode has the generator polynomial $g(x) = 1+x+x^3$. Calculate the event vector R=[1 1 1 1 1 1 1],R=[1 0 1 0 1 0 1]. calculation circuit	e CO9	L4
57		er shown in the fig. Draw the state diagram. Draw th	CO9	L4
	code tree. Find	code word for 10111.		
е	Experiences		-	-
1			CO1	L2
2				
3				
4			CO3	L3
5				

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs		15EC54	Sem:	I	Marks: 30 Time: 75 minutes						
Code	e:										
Coui	Course: Information Theory and Coding										
-	-	Note: Answer any 2 questions, each carry equal marks.					al marks.	Mark	СО	Level	
								S			
1	a	For a Linear Block Code the syndrome is given by:						10	CO9	L4	

AN INC		SKIT	Teaching Process	Rev No	o.: 1.0	
SRI KRIS		Doc Code:	SKIT-EC.Ph5b1.F02	Date: 1	8-08-2	2019
* BA	WGALORE	Title:	Course Plan	Page: 2	25 / 31	
Copyrig	ght ©20	17. cAAS. All rights reserve		1	1 1	
		S1 = r1 + r2 + r2				
		$S2 = r1 + r2 + r_{1}$				
		S3 = r1 + r3 + r4				
			or Matrix (ii) Find Parity Check Matrix (ii) Draw the Encode	r		
			many errors can be detected and corrected?			
	b	Write short not	e on Golay code and BCH code	5	CO10	L3
2	a	For a (6,3) cyclic i)Generator Polyn iii)Parity Check n	8	CO9	L4	
	b		ode has the generator polynomial $g(x) = 1+x+x^3$. Calculate the bived vector R=[1 1 1 1 1 1],R=[1 0 1 0 1 0 1]. alculation circuit.	e 7	CO9	L4
	с					
	d					
3	a	Write a note or	n Trellis diagram with example	15	CO9	L4
	b					
4	a	draw the con transition table	onvolution encoder with g1=1101 and g2=1011 volution encoder block diagram. Write down state e. Draw code tree. Find the encoder output produced 101 traversing through the code tree.		CO10	L4

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

				Model A	Assignment	Questions				
Crs C	ode:	15EC54	Sem: 5	I	Marks:	5 / 10	Time:	90 - 120) minut	tes
Cours	se:	Informa	tion Theory a	and Coding						
Note:	Each	student	to answer 2-	-3 assignm	ents. Each a	assignment	carries equ	al mark.		
SNo	ι	JSN		Assign	ment Des	cription		Mark	СО	Level
								S		
1	Obtain the output of the (2,1,2) convolution encoder fo					or 10	CO9	L4		
			g1=111,g2=	011 for n	nessage 11	101. Detail	the conten	ts		
			of the shift r	egister afte	er every cloo	:k.				
2			Consider a	convolutio	n encoder	with $g1=1$	10, g2=10	1, 10	CO9	L4
			g3=111							
			find the con	straint leng	gth, find the	e rate. Draw	the encod	er		
	block diagram.									
3			Explain state	diagram a	nd state tra	nsition tab	le.	5	CO9	L2
4			Explain tree	diagram wi	ith an exam	ple.		5	CO9	L3

	SKIT	Teaching Process	Rev No.: 1.0				
RIN INS	Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18–08–2019				
BANGALORE	Title:	Course Plan	Page: 26 / 31				
Copyright ©2017.	cAAS. All rights reserve	ved.					
5	Evola	un Tellis diagram with an example	5 CO10 13				

5	Explain Tellis diagram with an example.	5	CO10	L3
6	What do you mean by transfer function of a convolution	5	CO10	L3
	code.			
7	Write distance properties of constitutional codes.	5	CO10	L3
8	Write a short note on decoding of convolution codes.	5	CO10	L3
9	Explain Viterbi algorithm.	10	CO10	L3
10	What do you mean by catastropic code	5	CO10	L3

F. EXAM PREPARATION

1. University Model Question Paper

Cou	rse:	Information T	heory and Co	oding			Month / Y	<i>lear</i>	May /	2018
Crs	Code:	15EC54	Sem:	5	Marks:	80	Time:		180	
									minut	es
-	Note	Answer all FIV	E full questic	ons. All ques	tions carry	equal marks	•	Mar ks	CO	Leve I
1		Derive an e messages.	xpression fo	or average	entropy	of long inc	lependent	4	C01	L2
		Explain Mark information so		al model	used to	represent c	lependent	4	L2	L2
	с	Find H, G1,G2	for the given	c 1/4	P3=	14		8	CO2	L3
				OR						
-		Define inform use of logarith	-				ustify the	6	CO1	L2
	b	Establish relat	ion between	i)Hartely an	d nats ii)na	ts and bits		4	CO2	L2
	с	For the Marko	ov model find	d State prob	Bability, sta	te entropy a entropy.	nd source	8	CO2	L3
2		Apply Shanon information	's encoding	algorithms t	o generate	binary code	for set of	12	C03	L3

and the	SKIT Teaching Process Rev			No.: 1.0													
A BANKING T			Code					51.FC)2				Date	e: 18	18-08-2019		
Convrie	ht @2017	. caas. ai	itle:		Cour	se P	lan						Pag	e: 27	7 / 31		
	jiit @2017		Sym			В	СС	DD	EE	FF	GG						
			Р	9/ 2	39 2	/3	3/ 32	3/3 2	3/3	3/3 2	2/32	_					
	b	Exnali	n nre				52	2	2	2				04	C03	L3	
		Expalin prefix code OR								01							
-	a	Consi	der th	ne fo	ollow	/ing	sou	rce.						6	CO3	L3	
			Sym	AA	A B	В	CC	DD	EE	FF							
			Р	0.4	4 0	.2	0.2	0.1	0.0 8	0.02		_					
		Find t	he co	ا de ۱	word	usi	ng S	hanc	on Fan	o alg	orithm	 1.					
	b	Consi					-							10	CO4	L3	
			Sy m	AA	BB	C C	D D	EE	FF	G	G						
			1 1	1/ 3	1/ 27	1/ 3		1/ 27	1/27	1	/27						
		Find t	he co	de v	word	usi	ng ⊦	luffn	nan al	goritł	ım.						
3	a	Write	the cl	nan	nel n	natr	ix fo	or the	e chan	nel d	iagram	n given.		6	CO5	L3	
					0.8		7 1	1	P[X ₁]=-	-							
			× 2	0.1	0.8	70.1	>+ 2	Y	P[X ₂]=-	1							
			3		70.0	20.2	-3		$P[X_2] = -$ $P[X_3] = -$	1							
										5				1.0			
	b				D() -	2	t and	D()	_ 1				10		L3	
					$P(\mathbf{x}_2$	2) =	· 3 a	1/2	P(x ₃) 1/2	0	1						
		$P(y/x) = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1/2 & 1/2 \end{bmatrix}.$															
							L										
		For th P(x1)=		nne	el ma	ıtrix	give	en ca	alculat	e H(X	(),H(Y)	and channel capa	acity if				
_		of cha	nnel	cap	acity							pression for uppe			CO5	L3	
	b Define mutual information and explain all properties of mutual 9											L3					

4 a	Title: 22017. cAAS. All rights reserved information. B a Find H for giv G=1 1 0 1 0 (0) 1 1 1 0 1 0 11 0 0 b Consider a sy by v4=u1+u2+u V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	Course Plan ved. Explain data rate. en generator matrix.) 0 0 0 stematic (8,4) LBC whose parity check sequence are given 3 12 3 3	4	8-08-2 8 / 31 CO7	019 L4				
4 a	D2017. CAAS. All rights reserved information. E a Find H for giv G=1 1 0 1 0 0 1 1 1 0 1 0 11 0 0 b Consider a sy by v4=u1+u2+u V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	Explain data rate. en generator matrix. 0 0 0 stematic (8,4) LBC whose parity check sequence are given 3 12 3 3	4	C07					
4 a	information. E a Find H for giv G=1 1 0 1 0 0 1 1 1 0 1 0 11 0 0 b Consider a sy by v4=u1+u2+u V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	Explain data rate. en generator matrix.) 0 0 stematic (8,4) LBC whose parity check sequence are given 3 12 3 3							
	a Find H for giv G=1 1 0 1 0 0 1 1 1 0 1 0 11 0 0 b Consider a sy by v4=u1+u2+u V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	en generator matrix.) 0 0 stematic (8,4) LBC whose parity check sequence are given 3 12 3 3							
	G=1 1 0 1 0 0 1 1 1 0 1 0 11 0 0 b Consider a sy by v4=u1+u2+u V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	0 0 0 stematic (8,4) LBC whose parity check sequence are given 3 12 3 3							
b	1 1 1 0 1 0 11 0 0 b Consider a sy by v4=u1+u2+u V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	0 0 stematic (8,4) LBC whose parity check sequence are given 3 12 3 3	12		L4				
b	0 11 0 0 b Consider a sy by v4=u1+u2+u V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	0 stematic (8,4) LBC whose parity check sequence are given 3 12 3 3 3	12		L4				
b	b Consider a sy by v4=u1+u2+u V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	stematic (8,4) LBC whose parity check sequence are given 3 12 3 3 3	12		L4				
b	by v4=u1+u2+u V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	3 12 3 3	12		L4				
	v4=u1+u2+u V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	12 3 3							
	V5=u0+u1+u v6=u0+u1+u v7=u0+u2+u	12 3 3							
	v6=u0+u1+u v7=u0+u2+u	3 3							
	Write generat	or and parity check matrices. Draw the encoder diagram.							
		Write generator and parity check matrices. Draw the encoder diagram.							
	a Consider a (7	7,4) Cyclic code with $g(x)=1+x+x2$ and obtain the code	12	C07	L3				
ŭ		non symmetric form for the input sequence 1010 and		07	LJ				
b	b Obtain genera g(x)=1+x+x2	ator and parity check matrix for an (n,k) cyclic code with	4	CO8	L4				
5 a	length.	rolution code given, find the code rate and constraint diagram, trellis diagram	:	CO9	L4				
	inpu	s FF FF output							
b	g1=100,g2=1	volution encoder has generator polynomial vector 111 and g3=101. Draw encoder diagram. If the input is ut the output using transform domain approach.		CO10	L4				
		OR							
a		convolution encoder. Draw the state diagram. Draw the d the code sequence for 10111	8	CO9	L4				

Dept EC Prepared by Approved

SIP

FF

4

952

Codeword

Checked by

TITUTE OF TROMUCOR
ES * BANGALORE *

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18-08-2019
Title:	Course Plan	Page: 29 / 31

	For a $(2,1,2)$ convolutional encoder with generator sequence $g1=111$, $g2=101$	8	C010	L4
	draw the encoder circuit. Find the code word for message sequence			
	10111 using time domain approach.			

2. SEE Important Questions

Course:		Information T	heory and C	oding			Month	n / Year	May /2018	
Crs Code:		15EC54	Time:		180 minut	es				
	Note	Answer all FIV	É full questi	ons. All ques	stions carry	equal marks.		_	-	
Mo dul e	Qno.	Important Qu	estion					Marks	CO	Year
1		Derive an ex independent s	f long	03	CO1	2018				
	2	4)G1 and G2	V4B 34	For the e 1)State pr 2)State er 3)Source	robability ntropy	v source find	out	10	CO2	2018
	3	Define self in	formation, e	entropy and i	nformation	rate		03	CO1	2018
	4	Mention prop	erties of en	tropy and pro	ove external	property.		07	CO1	2018
		A source ei and1/8. Prove			probabiliti	es 7/16,5/	16,1/8	04	C01	2018
		A facsimile wi brightness lev		-	-				CO1	2018

status.	TUTE OF THE	SKIT	Teaching Process	Rev No.	: 1.0	
SRI KRISH		Doc Code:	SKIT-EC.Ph5b1.F02	Date: 18	8-08-2	2019
* BAN	VGALORE*	Title:	Course Plan	Page: 30	0/31	
Copyrig	ht ©2017	. cAAS. All rights reser		_!		
		occur. Find ra	ate of information is one picture is transmitted in 3 sec			
2	1	A discrete me	emory less source has probabilities	10	CO4	2018
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		find the a	n fano neorem P = {12000000000000000000000000000000000000	06	CO4	2018
	3	Write a short	note on Lempel Ziv algorithm	05	CO4	2018
	4	Derive source	M_1 M_2 M_3 M_4 M_5	05	CO4	2018
	5	Using Shanc	1/8 1/16 3/16 1/4 3/8	06	CO4	2018
		coding algori	thm find the code word, efficiency and redundancy.			
			papacity of $P(\frac{y}{x}) = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.1 & 0.8 & 0.1 \\ 0 & 0.2 & 0.8 \end{bmatrix}$			
3	1	Find the ca channel who matrix is	apacity of (/x) [0.1 0.8 0.1] ose noise	04	CO5	2018
	3		$P(\mathbf{y}_{X}) = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} & P(\mathbf{x}_{1}) = p(\mathbf{x}_{2}) = \frac{1}{2}.$ following characteristics. Find H(X),H(Y),H(X,Y)	06	CO6	2018
		-	ssion for channel capacity of binary erasure channel. on difference entropy	05		2018 2018
4	1	1)Find all pos	atic (6,3) LBC, parity is given by sible code vector nimum weight of the code. P = 0 1 1	10	CO8	2015

AN INS		SKIT Teaching Process Re				ev No.: 1.0				
SILAN INGALORE*		Doc Code:	Date: 18	ate: 18-08-2019						
		Title:	Page: 31	age: 31 / 31						
Copyright ©2017. cAAS. All rights reserved.										
		4)for R=1100								
	2	What are diffe	06	C07	2015					
5	1	What is bina	ry cyclic code? Describe the features of encoder and	l 10	CO10	2015				
		decoder used								
	2	Write a short	note on Golay code and BCH code.	06	CO9	2015				